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Abstract

Brain connectivity analyses show considerable promise for understanding how our neural pathways gradually
break down in aging and Alzheimer’s disease (AD). Even so, we know very little about how the brain’s networks
change in AD, and which metrics are best to evaluate these changes. To better understand how AD affects brain
connectivity, we analyzed anatomical connectivity based on 3-T diffusion-weighted images from 111 subjects (15
with AD, 68 with mild cognitive impairment, and 28 healthy elderly; mean age, 73.7 – 7.6 SD years). We per-
formed whole brain tractography based on the orientation distribution functions, and compiled connectivity ma-
trices showing the proportions of detected fibers interconnecting 68 cortical regions. We computed a variety
of measures sensitive to anatomical network topology, including the structural backbone—the so-called
‘‘k-core’’—of the anatomical network, and the nodal degree. We found widespread network disruptions, as con-
nections were lost in AD. Among other connectivity measures showing disease effects, network nodal degree,
normalized characteristic path length, and efficiency decreased with disease, while normalized small-worldness
increased, in the whole brain and left and right hemispheres individually. The normalized clustering coefficient
also increased in the whole brain; we discuss factors that may cause this effect. The proportions of fibers intersect-
ing left and right cortical regions were asymmetrical in all diagnostic groups. This asymmetry may intensify as
disease progressed. Connectivity metrics based on the k-core may help understand brain network breakdown
as cognitive impairment increases, revealing how degenerative diseases affect the human connectome.

Key words: Alzheimer’s disease; asymmetry; brain connectivity; diffusion tensor imaging; efficiency; k-core; mild
cognitive impairment; nodal degree; small-world; tractography

Introduction

Alzheimer’s Disease (ad) is a progressive, degenerative
brain disease affecting around one in eight people (13%)

aged 65 or older (Alzheimer’s Association Colorado, 2011).
As AD progresses, many cognitive domains gradually de-
cline, including memory (Filippi et al., 2012); beta-amyloid
and tau proteins accumulate in the brain, leading to inflam-
mation, neuronal atrophy, and cell death (Wang et al.,
2012). The brain’s gray matter shows widespread neuronal
loss, and many studies have revealed widespread cortical
and hippocampal atrophy in AD. As neurons are lost, white

matter volume is also reduced, due to both myelin degenera-
tion and axon loss in neural fiber tracts (Bartzokis, 2009;
Braak and Braak, 1996; Braskie et al., 2012a, b; Hua et al.,
2008). Fluid-attenuated inversion-recovery or T2-weighted
scans are often used to evaluate white matter hyperinten-
sities—a sign of cerebrovascular disease—and there is grow-
ing evidence that breakdown of the brain’s fiber networks
may explain some of the symptoms as the disease progresses.

As new methods emerge to assess brain connectivity, some
research groups have begun to use diffusion-weighted imag-
ing (DWI) and resting state functional magnetic resonance
imaging (rs-fMRI) to study the global breakdown of
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network integration in degenerative disease (Buckner, 2005;
Delbeuck et al., 2003; Gili et al., 2012; Wegrzyn et al., 2011).
Neuropsychological deficits are often attributed to a discon-
nection between brain regions (Wernicke, 1874/1977; Lich-
theim, 1885); the notion of a ‘‘disconnection syndrome’’ was
introduced by Geschwind (1965).

Evidence supporting a disconnection process in AD has
emerged from various techniques, including MRI, electroen-
cephalography, and positron emission tomography (PET).
On MRI, AD patients show a lower density of associative
white matter fibers in the cingulum, the splenium of the cor-
pus callosum and the superior longitudinal fasciculus (Rose
et al., 2000). At the same time, interhemispheric functional
synchronization also breaks down (Azari et al., 1992). Coher-
ence studies by Wada and colleagues (1998) found disturbed
interhemispheric functional connectivity in AD. Interhemi-
spheric disturbances in AD have been linked to the disconnec-
tion syndrome observed clinically (Delbeuck et al., 2003). PET
studies also show reduced metabolism in a network of re-
gions, with greater amyloid deposition in the posterior cingu-
late, retrosplenial, and lateral parietal cortex (Buckner, 2005).
fMRI also shows deactivated regions that overlap with medial
parietal/posterior cingulate regions that show reduced resting
metabolic activity in AD subjects, compared to normal elderly
and young adults (Lustig et al., 2003).

Diffusion imaging has recently been added to several
large-scale neuroimaging studies, including the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), to monitor white
matter deterioration using metrics not available with stan-
dard anatomical MRI. Diffusion MRI yields measures related
to fiber integrity in AD, such as the mean diffusivity and frac-
tional anisotropy of local water diffusion (Clerx et al., 2012);
in addition, tractography methods can infer neural pathways
and connectivity patterns, yielding additional, more complex
mathematical metrics describing fiber networks.

Network analysis has only recently been applied to study
AD. Many mathematically novel metrics have been pro-
posed, such as a network’s ‘‘structural backbone’’—or k-
core (Hagmann et al., 2008)—but have not yet been studied
in AD. Here, we analyzed several network measures in nor-
mal elderly subjects, and people with early and late mild cog-
nitive impairment (MCI), and AD. We mapped the whole
brain, left, and right hemisphere ‘‘structural cores’’ of the
brain in Alzheimer’s patients and compared them to the
cores in healthy controls. A network’s structural core is
based on using k-core decomposition (Hagmann et al., 2008)
to find important sets of nodes that are highly and mutually
interconnected.* We hypothesized that the core graph of con-
nections would highlight alterations and disconnections in re-
gions that change structurally in AD versus controls, such as
the temporal, parietal, and frontal association areas (Azari
et al., 1992; Horwitz et al., 1987). We also expected network
breakdown in the posterior cingulate, posterior medial cortex
and lateral parietal cortex (Buckner, 2005; Lustig et al., 2003;
Xie and He, 2012).

In addition to using k-core analysis for the first time to as-
sess AD-associated anatomical network changes, we studied
several global topological properties on the brain’s binarized
k-core. To avoid testing too many primary hypotheses, and
thereby inflating the false positive rate or reducing power
by applying a heavy correction for multiple comparisons,
we chose for our primary analysis to strictly focus on the
nodal degree, normalized characteristic path length, effi-
ciency, normalized clustering coefficient, and normalized
small-world effect, comparing AD patients and controls. All
network properties were derived from the k-cores for each
of the subjects. Also, we were interested in brain laterality
in disease as some (but not all) prior studies report that the
left hemisphere is more atrophied in AD with a greater reduc-
tion in gray matter (20–30% local loss), relative to the right
hemisphere (Thompson et al., 2001). This lateralized brain
dysfunction was also studied by Loewenstein and colleagues
(1989) who reported left hemisphere hypometabolism in the
frontal, temporal, parietal lobes, and basal ganglia-thalamus
of AD patients. In their study, these apparent asymmetries
were not correlated with the severity or duration of AD. Little
is known about left-right hemisphere differences, and as
interconnectivity may play a significant role in AD, we com-
pared left and right hemisphere networks to see if first, net-
work asymmetries were detectable in general, and second,
if they were altered with the clinical progression of AD.

Methods

Subjects and diffusion imaging of the brain

Data collection for ADNI2 is still ongoing, at the time of
writing (December 2012). The ADNI began in 2005 as a
large multisite longitudinal study, which uses a variety of im-
aging methods (including MRI and PET) to study how AD
progresses, and to define biomarkers to monitor and predict
disease progression. The second phase of ADNI—known as
ADNI2—added new imaging modalities—diffusion tensor
imaging (DTI), rs-fMRI, and arterial spin labeling ( Jack
et al., 2010) to supplement the methods available to track dis-
ease progression.

Here we analyzed DWI from the 111 subjects with available
data; Table 1 shows their demographics and diagnostic infor-
mation. All 111 subjects underwent whole brain MRI scanning
on 3 T GE Medical Systems scanners, at a variety of sites
across North America. Table 2 shows a breakdown of the

Table 1. Demographic Information for Alzheimer’s

Disease Neuroimaging Initiative Subjects Scanned

with Diffusion Magnetic Resonance Imaging

Controls eMCI lMCI AD Total

N 28 57 11 15 111
Age 73.0 73.7 76.3 75.6 73.7
Sex 14M/14F 34M/23F 7M/4F 9M/6F 64M/47F

One hundred eleven subjects had been scanned at the time of writ-
ing (December 2012). Their minimum age was 55.3 and maximum
age was 90.4. Based on a t-test, the control group did not differ in
age from any of the cognitively impaired groups. p-Values from t-
tests comparing the mean age of the controls to the ages of the
eMCI, lMCI and AD groups were 0.67, 0.094, and 0.30.

AD, Alzheimer’s disease; eMCI, early mild cognitive impairment;
lMCI, late mild cognitive impairment.

*Although a k-core is often a group of nodes that are highly and
mutually interconnected, this does not always have to be the case.
For low values of k, the k-cores are not highly connected (they have
a low degree). Although the core itself must be interconnected, it
may well not have a (relatively) higher level of interconnectivity
than other subnetworks of the network.
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sites where the scans were acquired. Standard anatomical T1-
weighted spoiled gradient echo sequences were collected
(256 · 256 matrix; voxel size = 1.2 · 1.0 · 1.0 mm3; inversion
time [TI] = 400 msec, repetition time [TR] = 6.984 msec; echo
time [TE] = 2.848 msec; flip angle = 11�) in the same session
as the DWI (256 · 256 matrix; voxel size: 2.7 · 2.7 · 2.7 mm3;
scan time = 9 min). Forty-six separate images were acquired
for each DTI scan: 5 T2-weighted images with no diffusion
sensitization (b0 images) and 41 DWI (b = 1000 sec/mm2).
This protocol was chosen after a comparison of several differ-
ent protocols, to optimize the signal-to-noise ratio in a fixed
scan time ( Jahanshad et al., 2010; Zhan et al., 2012; Zhan
et al., 2013b).

Image analysis. Diffusion imaging may be used in con-
junction with an automatically labeled set of regions from an-
atomical MRI to perform connectivity mapping and network
analysis of the brain’s fiber connections. Many analyses of
brain connectivity have been conducted in this way (Dennis
et al., 2012a, b; Dennis and Thompson, 2012; Jahanshad
et al., 2011, 2012; Zalesky, 2009; Zhan et al., 2012). Connectiv-
ity matrices were compiled using a processing pipeline de-
scribed previously (Braskie et al., 2012a, b; Dennis et al.,
2012b; Jahanshad et al., 2011, 2012; Nir et al., 2012a, b).

Preprocessing and coregistration. Nonbrain regions
were automatically removed from each T1-weighted MRI
scan, and from a T2-weighted image from the DWI set
using the FSL tool ‘‘BET’’ (http://fsl.fmrib.ox.ac.uk/fsl/).
Anatomical scans subsequently underwent intensity inhomo-
geneity normalization using the MNI ‘‘nu_correct’’ tool
(www.bic.mni.mcgill.ca/software/). All T1-weighted images
were linearly aligned using FSL (with six degrees of freedom)
to a common space with 1 mm isotropic voxels and a
220 · 220 · 220 voxel matrix. The DWIs were corrected for
eddy current distortions using the FSL tools (http://fsl.fmrib
.ox.ac.uk/fsl/). For each subject, the five images with no diffu-
sion sensitization were averaged, linearly aligned, and
resampled to a downsampled version of their T1-weighted
image (110 · 110 · 110, 2 · 2 · 2 mm). b0 maps were elastically
registered to the T1-weighted scan to compensate for suscepti-
bility artifacts. Images were visually inspected and there were
no misalignments or cases where the field of view did not
cover the full brain (i.e., cropping).

Tractography and cortical extraction. The transformation
matrix from linearly aligning the mean b0 image to the T1-
weighted volume was applied to each of the 41 gradient di-
rections to properly reorient the orientation distribution func-
tions (ODF). We also performed whole brain tractography as
described in (Aganj et al., 2011) on the sets of DWI volumes.
Only linear registration was performed before tractography,
as nonlinear registration before tractography could introduce
possible processing artifacts. Gradient directions for each

DWI volume were corrected for according to the transforma-
tion matrix obtained from the linear registration. The tractog-
raphy method uses a fiber detection approach based on the
Hough transform; the Hough transform algorithm is a prob-
abilistic fiber tracking method that is based on a voting pro-
cess. The algorithm tests candidate three-dimensional (3D)
polynomial curves in a diffusion imaging volume by assign-
ing a score to each curve that passes through a seed point in a
d-dimensional space. The goal of the algorithm is to find all
potential curves that pass through chosen seed points while
computing their scores and finally, selecting the curve with
the highest score. Curves with the highest scores are stored
in a d-dimensional array, called the Hough transform, and
can represent potential fiber tracts in the brain. The results
are obtained through a voting process where real-valued
local votes for curves that are derived from diffusion data
help define the candidate tract score. If the curve passes
through a voxel, the vote (which is the integrand of the
score integral) outputs a value other than zero, and if it
does not pass though a voxel, then the output is zero
(Aganj et al., 2011); to better detect crossing fibers, the method
uses a constant solid angle orientation density function
(Aganj et al., 2010) rather than a diffusion tensor, to model
the local diffusion propagator. The angular resolution of the
ADNI data is limited to avoid long scan times that may
tend to increase patient attrition. Even so, this ODF model
makes best use of this limited angular resolution (even if
the protocol is not ideal for resolving fiber crossing).

Elastic deformations obtained from the echo-planar imag-
ing distortion correction, mapping the average b0 image to
the T1-weighted image, were then applied to each recovered
fiber’s 3D coordinates to more accurately align the anatomy
(we assume that the anatomical scan serves as a relatively un-
distorted anatomical reference). Each subject’s dataset con-
tained *10,000 useable fibers (3D curves) in total.

Thirty-four cortical labels per hemisphere, listed in the
Desikan-Killiany atlas (Desikan et al., 2006), were automati-
cally extracted from all aligned T1-weighted structural MRI
scans using FreeSurfer version 5.0 (http://surfer.nmr.mgh
.harvard.edu/) (Fischl et al., 2004). The resulting T1-weighted
images and cortical models were aligned to the original
T1-weighted input image space and down-sampled using
nearest neighbor interpolation (to avoid intermixing of labels)
to the space of the DWIs. To ensure tracts would intersect la-
beled cortical regions, labels were dilated with an isotropic
box kernel of width 5 voxels ( Jahanshad et al., 2011).

N · N matrices representing structural connectivity. For
each subject, a baseline 68 · 68 connectivity matrix was cre-
ated (34 left and 34 right hemisphere regions of interest as
listed in Table 3). Each matrix element represents the propor-
tion of the total number of fibers, in that subject, connecting
one cortical region to another. For the purposes of this
paper, we use the word fiber to denote a single curve
extracted via tractography; if all subjects had no detected
fibers at all for a specific matrix element, then that connection
was considered invalid, or insufficiently consistent in the
population, and was not included in the analysis.

Brain network measures

Topological changes in the brain’s networks may be
analyzed using graph theory, a branch of mathematics

Table 2. Acquisition Sites

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14

# scans 12 3 9 7 10 4 8 0 13 12 10 7 9 7

Number of scans acquired at each of the 13 sites, note there are no
images from Site 8.
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increasingly applied to study structural and functional brain
networks (Lee et al., 2012; Sporns, 2011).

These types of analyses on brain networks require that the
brain’s components be represented as a graph. The network’s
nodes are typically defined as regions of interest segmented
automatically from coregistered anatomical MRI. In DTI
studies, these network nodes are considered to be linked by
‘‘edges’’ with weights that denote some measure of the con-
nectivity between the two regions, such as the density or in-
tegrity of fibers recovered using tractography (Bullmore
and Sporns, 2009; Hagmann et al., 2008). Different measures
of connectivity are used in different studies—connectivity
matrices typically represent some descriptive parameter
about the connection between all pairs of anatomical regions
studied. The most common topological network measures
used to describe the integrity of the healthy or diseased
human brain network include the nodal degree, characteristic
path length, efficiency, clustering coefficient and ‘‘small-
worldness’’ (Sporns, 2011). The characteristic path length, a
measure of integration, is the average shortest path length
in a network:

L =
1

n
+i2NLi =

+j2N, j 6¼idij

n� 1
(1)

where Li is the average distance between node i and all other
nodes in the networks, dij is the shortest path length, (i,j) is a
link between nodes i and j, and n is the number of nodes
(Sporns, 2011).

Efficiency is a global and generally robust measure, and is
approximately the inverse of the characteristic path length:

E =
1

n
+i2N

+j2N, j 6¼id
� 1
ij

n� 1
(2)

The clustering coefficient, a measure of segregation, is the
fraction of a node’s neighbors that are neighbors of each other:

C =
1

n
+i2NCi =

1

n
+i2N

1
2 +j, h2Naijaihajh

ki(ki� 1)
(3)

where Ci is the clustering coefficient of node i (Ci = 0, ki < 2), ki

is the degree of a node i, ki = +j2Naij where aij is the connection
status between nodes i and j when a link between (i,j) exists
(Sporns, 2011).

Furthermore, the small-world effect is the ratio of the mean
clustering coefficient to the characteristic path length after
both are normalized based on data from corresponding ran-
dom networks:

S =
C

Crand

L
Lrand

= c=k (4)

where C and Crand are the unrandomized and randomized
mean clustering coefficients, while L is Lrand are the
unrandomized and randomized characteristic path lengths
(Sporns, 2011). The clustering coefficient was normalized by
computing the ratio of the clustering coefficient in the brain
network to the clustering coefficient computed in 100 simu-
lated random networks and was denoted by gamma, c. Sim-
ilarly, the normalized path length was the ratio of the path
length in the brain network to the path length computed in
100 simulated random networks, and was denoted by
lambda, k. These summary measures have been widely
employed in studies using various imaging modalities and
analytic methods (Dennis and Thompson, 2012), and their re-
producibility has also been evaluated (Dennis et al., 2012c).

In graph theory, a connection matrix may be compiled that
describes the topology of a network. A square matrix can rep-
resent any network of connections, but the network is nor-
mally displayed as a graph, that is, a discrete set of nodes
and edges (Sporns, 2011). In our analysis, the matrix entries
store the total number of fibers connecting each pair of
regions (the nodes); these could also be considered as the
‘‘weights’’ of the edges that connect a pair of nodes. Some ma-
trix entries are null (zero), as not all pairs of regions are con-
nected. Based on these matrices for all 111 subjects, we went
on to map the so-called ‘‘structural core’’ of each subject’s
anatomical network.

We analyzed the whole brain, left, and right hemispheres
separately; in the single-hemisphere analyses, to focus our at-
tention on the connections specific to the hemisphere we
chose not to evaluate fibers that crossed between the hemi-
spheres. In other words, we considered the subnetwork
that only had nodes that were entirely within a specific hemi-
sphere. Then, we compared the left and right hemispheres in

Table 3. Index of the Cortical Labels Extracted

from FreeSurfer

1 Banks of the superior temporal sulcus
2 Caudal anterior cingulate
3 Caudal middle frontal
4 —N/A—
5 Cuneus
6 Entorhinal
7 Fusiform
8 Inferior parietal
9 Inferior temporal

10 Isthmus of the cingulate
11 Lateral occipital
12 Lateral orbitofrontal
13 Lingual
14 Medial orbitofrontal
15 Middle temporal
16 Parahippocampal
17 Paracentral
18 Pars opercularis
19 Pars orbitalis
20 Pars triangularis
21 Peri-calcarine
22 Postcentral
23 Posterior cingulate
24 Precentral
25 Precuneus
26 Rostral anterior cingulate
27 Rostral middle frontal
28 Superior frontal
29 Superior parietal
30 Superior temporal
31 Supra-marginal
32 Frontal pole
33 Temporal pole
34 Transverse temporal
35 Insula

Index of the cortical labels extracted from the anatomical MRI
scans using FreeSurfer (Fischl et al., 2004). In the latest version of
FreeSurfer (version 5.0), cortical area #4 was not parcellated and is
therefore, excluded; to ease comparison with prior papers using
this numbering scheme, no region is assigned the number 4.
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healthy and AD subjects to analyze the topology and integ-
rity of the fiber bundles.

To model the basic architecture of the neural networks, we
used a k-core decomposition algorithm that disentangles hier-
archical structure by focusing on what is called the ‘‘central
cores’’ of the networks (Alvarez-Hamelin et al., 2006). The
k-core decomposition outputs a network core that consists
of highly and mutually interconnected nodes (Hagmann
et al., 2008). This is done by identifying subsets of graphs
(k-cores) by recursively removing nodes with degrees lower
than k, such that k serves as a degree threshold for nodes
(Alvarez-Hamelin et al., 2006). Then, each node is assigned
a core number (Daianu et al., 2012b; Hagmann et al., 2008):
larger values of k correspond to nodes that have larger de-
grees and are ‘‘more central’’ within a network (Alvarez-
Hamelin et al., 2006).

For a graph G = (N,E) with jNj = n nodes and jEj = e edges, a
k-core is computed by assigning a subgraph, H = (B,EjB)
where set B4N is a k-core of order k if 8� 2 B: degreeH ‡ k,
and H is the maximum subgraph satisfying this property
(Alvarez-Hamelin et al., 2006). In other words, to compute
the ‘‘18-core’’ (for example) of the connectivity matrix, all
nodes that have a degree 18 or higher would be kept. These
would be output in a 34 · 34 matrix (the same size as the con-
nectivity matrix); nodes that do not satisfy this condition are
replaced with zeroes. For this study, we selected a value of
k = 18; this value was selected empirically, as it represents
the minimal value where the majority ( > 50%) of nodes
within each hemisphere would still remain connected. In
other words, most nodes would be connected to at least one
remaining node. On the other hand, it is not required that
the remaining nodes in a k-core must form one single totally
connected graph, in which information could travel from
any node to any other via a path of edges.

We also computed topological network measures including:
(1) global nodal degree (average of all nodal degrees); (2) nor-
malized characteristic path length (k); (3) efficiency; (4) normal-
ized clustering coefficient (c); and (5) a parameter describing
the normalized small-world effect for the whole brain, left,
and right hemisphere binarized k-core matrices, in all subjects.
These measures are detailed in (Sporns, 2011). We applied
these measures to the whole brain 68 · 68 k-core matrices, left
hemisphere 34 · 34 k-core matrices and the right hemisphere
34 · 34 k-core matrices. We compared the two brain hemi-
spheres within each group (controls, early mild cognitive im-
pairment [eMCI], late mild cognitive impairment [lMCI] and
AD), to test for left/right asymmetries in connectivity. To as-
sess diagnostic group differences, we analyzed the difference
between the network measures in the whole brain in controls
and whole brain in AD subjects, differences between the net-
work measures in the left hemisphere in controls and the left
hemisphere in AD subjects, and then we did the same for the
right hemisphere.

We separately fitted a random effects regression model to
the k-core matrices of controls and AD subjects to test for di-
agnostic group differences, in the left hemisphere, and then
separately in the right hemisphere (with controls coded as 0
and AD subjects coded as 1). We covaried for age and sex
and used acquisition site as a random regression variable.
The fiber density strengths in the k-core structures were com-
pared across every node that was in the k-core of at least one
subject. The global network measures were compared across

the whole brain, left, and right hemispheres, separately.
To test how the clinical test scores were correlated with the
fiber densities in the k-core matrices in the whole brain,
left, and right hemispheres, we performed a random effects
regression across all subjects and used the scanning site as a
random regression variable while covarying for age and sex.

Furthermore, we also separately fitted a random effects re-
gression to the connectivity matrix data from 28 controls, 57
eMCI, 11 lMCI, and 15 AD subjects to test for differences be-
tween the connectivity matrices of the left and right hemi-
spheres (same setup as above). In this primary analysis, we
did not covary for disease, to increase power. However, we
tested if the asymmetry in the brain intensifies with disease
progression using a random effects regression among sub-
jects, while using site as a random regression variable and
covarying for age and sex. To simplify the presentation, we
show the regression results as a matrix, to indicate differences
between the left, CL(x,y), and right, CR(x,y), hemisphere con-
nectivity matrices across all 111 subjects (Fig. 3). Similarly,
we applied a random effects regression to test for any differ-
ences in derived network topology measures for the left ver-
sus the right hemisphere subnetworks.

Results

First, we compared the connectivity matrices of the left and
right hemispheres across all subjects (controls, eMCI, lMCI
and AD) and found significant differences in a total of 115
connections, while covarying for age and sex and accounting
for scanning site. A total of 208 ‘‘valid’’ connections were ex-
amined (i.e., connections that occurred in all subjects), so 115
is 55%, when analyzing connections that were present in
> 80% of the subjects (false discovery rate [FDR] p = 0.037).
By only examining edges that were present in nearly all sub-
jects, we may still have somewhat underestimated the degree
to which connectivity is asymmetric, but this is a reasonable
estimate of the large degree of hemispheric difference in con-
nections that are reliably extracted across an entire popula-
tion. In other words, over half of the valid connections
showed an asymmetry. We further ‘‘filtered’’ these connectiv-
ity matrices and thresholded the nodes by degree, to retain
the majority ( > 50%) of the nodes that were connected within
each hemisphere (k = 18) in our 34 · 34 k-core matrices. After
we defined the k-cores for the whole brain, left, and right
hemispheres in healthy and diseased subjects, we tested for
disease effects, and relationships to clinical scores.

Disease-related differences in networks

When the networks were pared down to the k-cores for all
subjects (k = 18)—the network ‘‘backbone’’—we were able to
detect disease effects on connectivity. In comparing AD and
control groups, we found prominent group differences
between the weighted k-core elements of different cortical
regions across the entire brain. For this regression to be
well-defined, we included only those nodes that are in the
k-cores for at least one of the subjects. Considering the left
hemisphere first, certain regions differed between AD and
controls, and, as expected, showed lower fiber density in
AD between the middle temporal and fusiform area, lower
fiber density in AD between inferior temporal and fusiform
area, lower fiber density in the pars triangularis and caudal
middle frontal, lower fiber density between the precentral
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FIG. 1. k-core networks of controls and Alzheimer’s disease (AD) subjects. Set of nodes present in the weighted k-cores of all
28 controls, k = 18, (top left panel) and all 15 AD subjects (top right panel). The k-value was preselected to include at least half
(i.e., the majority) of the detectable connected nodes per hemisphere (34 · 34). Results are presented over the whole brain. With
disease progression, the left hemisphere of AD subjects loses consistency in its k-core assignments (false discovery rate [FDR]
critical p-value = 0.0015). Bottom panel shows p-values from the whole brain from a random effects regression between the k-
cores (k = 18) of controls and AD subjects (where controls were coded as 0 and AD subjects coded as 1) using age and sex as
covariates and site as a random grouping variable; the significant connections that survived FDR were between the following
cortical regions: the middle temporal and fusiform, inferior temporal and fusiform, pars triangularis and caudal middle frontal,
precentral and caudal middle frontal, rostral middle frontal and pars opercularis, and superior parietal and lingual; also, a sig-
nificant difference in the proportion of total fibers was detected in the following regions: fusiform, precuneus, rostral cingulate,
and supra-marginal. Small black spheres show cortical areas where group differences were not detected.
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and caudal middle frontal, lower fiber density between the ros-
tral middle frontal and pars opercularis, and a lower proportion
of fibers in the fusiform, precuneus and rostral anterior cingu-
late (Fig. 1). The medial temporal lobe is among the first brain
regions to show atrophy in MCI and AD (Thompson et al.,
2003). Deterioration in its connectivity to other brain regions
is in line with current thinking about disconnection in AD.
Considering the right hemisphere, the AD group showed
lower fiber density between the superior parietal and lingual
areas relative to controls, a lower proportion of fibers in the
rostral anterior cingulate and higher proportion of fibers in
the supra-marginal region, relative to controls.

Relative to controls, the AD group lost all k-core connec-
tions in the left hemisphere (FDR critical p-value = 0.0015).
Note that this does not mean that all those fibers are gone
from the brain; when defining the k-core, the thresholding op-
eration on the nodal degree makes sure that only fibers with a
very high number of connections are retained, and these no
longer exist, at least in the left hemisphere. Figure 1 shows re-
gions with the most drastic changes. Some, but not all, studies
report a slightly greater effect of AD on the left hemisphere
(i.e., group differences in some brain measures may show
larger effect sizes on the left). Even so, any laterality may
just reflect a recruitment bias where patients with language
dysfunction, arising from left hemisphere atrophy, tend to en-
roll in greater proportions than those who do not have lan-
guage problems (Thompson et al., 2003).

Brain network measures: global nodal degree,
efficiency, normalized characteristic path
length, normalized clustering coefficient
and normalized small-world effect

We computed the network nodal degree, efficiency, nor-
malized characteristic path length, normalized clustering co-
efficient, and normalized small-world measures (these are
global measures of the overall network properties) from the
binarized k-cores of controls and AD subjects in the whole
brain, left, and right hemispheres, separately. Based on a ran-
dom effects regression between the brain network measures
in healthy subjects and AD subjects, we determined that
with increasing disease burden, the nodal degree, normalized
characteristic path length and efficiency significantly declined
in AD subjects, relative to controls in the whole brain, left,
and right hemispheres (means are in Table 4 and p-values
are in Table 5). Efficiency was expected to decline (according
to prior studies, e.g., Lo et al. [2010]), while the small-world
effect was expected to be altered, but not in a direction pre-

dictable a priori; here, the normalized small-world effect in-
creased in AD in all analyses, relative to controls. The
normalized clustering coefficient significantly increased in
the whole brain of AD compared to controls and did not
show detectable differences when the left and right hemi-
spheres were considered independently.

The nodal degree, efficiency and normalized characteristic
path length of the proportions of fibers (that passed FDR)
were lower in AD in the whole brain, left, and right hemi-
spheres, relative to controls. This decrease was consistent
among the MCI groups: the eMCI and lMCI groups took in-
termediate values between those for controls and AD groups
(Fig. 2). The normalized clustering coefficient of the propor-
tion of fibers was higher in AD in the whole brain (no signif-
icant changes were detected in the left and right hemispheres
between controls and AD). The slight increase in the cluster-
ing coefficient and decrease in the normalized characteristic
path length led to an increase in the proportion of fibers in
the small-world effect in AD in all analyses, relative to con-
trols (Tables 4 and 5).

Relation to clinical scores

To assess whether the network breakdown related to dif-
ferences in clinical test scores, we also ran a random effects re-
gression to test for any associations with the most widely
used clinical scores, namely the Mini Mental State Examina-
tion (MMSE), Clinical Dementia Rating Global Score (CDR-
Glob), Clinical Dementia Rating Sum of Boxes (CDR-SOB),

Table 4. Mean Network Measures in Controls (CTL) and Alzheimer’s Disease Subjects

CTL AD

NOD k EFF c SW NOD k EFF c SW

WB 19.78 0.29 0.27 2.03 7.08 15.22 0.23 0.20 2.30 10.38
LH 16.00 0.49 0.43 NS 2.80 12.59 0.39 0.33 NS 3.60
RH 15.54 0.47 0.42 NS 2.90 12.66 0.39 0.34 NS 3.57

The mean nodal degree, normalized characteristic path length and efficiency decreased significantly between controls and AD subjects in all
analyses. The normalized clustering coefficient increased in the whole brain of AD, while the normalized small-world effect increased in AD in
all analyses, relative to controls. Mean values were rounded off to the nearest hundredth.

NOD, global nodal degree; k, normalized characteristic path length; EFF, efficiency; c, normalized clustering coefficient; SW, normalized
small-world effect; WB, whole brain; LH, left hemisphere; RH, right hemisphere; NS, not significant.

Table 5. Differences in Fiber Networks

for the Whole Brain, Left, and Right

Hemispheres Between Controls (CTL)
and Alzheimer’s Disease Subjects

CTL vs. AD
Network measures

(p-values) NOD k EFF c SW

WB 3.86E-05 3.86E-05 4.02E-05 0.0038 9.06E-06
LH 2.91E-04 2.89E-04 3.08E-04 NS 2.99E-03
RH 1.51E-04 1.47E-04 1.85E-04 NS 9.03E-04

p-Values are shown, based on fitting a random effects model to the
network measures (degree, normalized characteristic path length, effi-
ciency, normalized clustering coefficient and normalized small-world)
applied on the k-core (k = 18) to test for diagnostic group differences be-
tween controls and AD subjects in the whole brain, left hemisphere,
and then separately in the right hemisphere (with controls coded as 0
and AD subjects coded as 1). We covaried for age and sex and used ac-
quisition site as a random regression variable.
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11 item Alzheimer’s Disease Assessment Scale-Cognitive
Subscale (ADAS-11) and 13-item Alzheimer’s Disease Assess-
ment Scale-Cognitive Subscale (ADAS-13) scales. These re-
gressions used clinical scores to predict any differences on
the k-core across all subjects in the study.

Analyses were run on the whole brain, left, and right hemi-
spheres separately (Table 6). Clinical test scores were all re-
lated to differences in some cortical regions. Consistent
relationships with all clinical scores were found for the

connections between the superior frontal cortex and caudal
anterior cingulate (see in bold, Table 6). As MMSE scores de-
creased, the fiber density of the k-cores also decreased (as
might be expected) between the superior frontal cortex and
caudal anterior cingulate in the whole brain analysis. Also
as expected, with increases in the disease burden scores
ADAS-11, ADAS-13, CDR-Glob, and CDR-SOB, fiber density
in the k-cores decreased between the superior frontal and cau-
dal anterior cingulate, in the whole brain analyses.

FIG. 2. Mean values for network measures in the brain for all diagnostic groups. The bar graph shows mean values (and
standard errors) for the fiber network nodal degree, normalized characteristic path length, efficiency, normalized clustering
coefficient, and normalized small-world effect for controls (CTL), early mild cognitive impairment (eMCI), late mild cognitive
impairment (lMCI) and AD groups in the whole brain (blue), left hemisphere (red) and right hemisphere (green). The nodal
degree, normalized characteristic path length and efficiency declined in AD subjects, relative to controls in the whole brain, left,
and right hemispheres ( p-values in Table 4) based on a regression setting controls to 0 and AD subjects to 1; this can be seen by
comparing each block of three bars to each succeeding block of three bars, which corresponds to increasing disease burden. The
normalized small-world effect increased in AD, relative to controls, and the normalized clustering coefficient increased in the
whole brain but did not show detectable differences in the left and right hemispheres individually between controls and
AD subjects.
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Effects on the fiber densities of the left and right hemi-
spheres were found in cortical regions that mostly overlap-
ped with the differences in the k-cores of AD subjects
versus controls. Clinical test scores were all related to differ-
ences in some cortical regions—such as in the proportion of
total fibers in the fusiform region for the left hemisphere,
and in the proportion of total fibers in the supramarginal re-
gion for the right hemisphere in all subjects (except for the
ADAS-13 score). All test scores increased as the fiber density
of the k-cores decreased in the fusiform area of the left hemi-
sphere, except for the MMSE score, which decreased as the
fiber density also decreased. This result is expected, as higher
MMSE scores denote better cognitive performance and higher
scores on other tests represent greater cognitive impairment.
For the right hemisphere, MMSE increased as the fiber den-
sity of the k-cores decreased in the supra-marginal region.
In the meantime, ADAS-11, CDR-Glob, and CDR-SOB
decreased as the fiber density also decreased in the supra-

marginal region of the right hemisphere. Overall, there
were no particular connections with significant correlations
to all clinical scores; in fact, it was more that the aggregate
number of connections linked with clinical scores was higher
than would be expected by chance.

Left/right asymmetries in network

To further understand how these network alterations may
differ by hemisphere with disease progression, we analyzed
differences between left and right hemispheres in each
group as well as the nodal degree measures applied to the
structural k-core of each group. For these, we performed ran-
dom effects regressions that returned significant differences
between the left and right hemisphere connectivity matrices
in each group: 28 controls, 57 eMCI, 11 lMCI, and 15 AD sub-
jects (Fig. 3). We might expect the number of connections with
significant asymmetries to increase, if the disease does not

Table 6. Clinical Correlates of Network Breakdown

Scores Whole brain Left hemisphere Right hemisphere

MMSE 1 connection: 63 and 37 (critical FDR
p = 8.50E-05)

15 connections: 3 and 3, 7 and 7, 8
and 7, 9 and 7, 9 and 9, 15 and 7, 15
and 9, 24 and 3, 27 and 3, 27 and 27,
29 and 7, 29 and 8, 30 and 7, 31 and
8, 35 and 7 (critical FDR p = 0.004)

10 connections: 11 and 1, 24 and 22,
31 and 22, 31 and 24, 31 and 25, 31
and 31, 35 and 17, 35 and 31, 35
and 35 (critical FDR p = 0.002)

ADAS-11 11 connections: 15 and 13, 25 and 15,
28 and 20, 45 and 42, 46 and 40, 51
and 48, 51 and 51, 60 and 23, 63
and 37, 64 and 25, 65 and 54
(critical FDR p = 0.002)

13 connections: 7 and 7, 9 and 7, 9
and 9, 15 and 7, 23 and 8, 25 and
11, 25 and 23, 27 and 27, 29 and 18,
30 and 7, 30 and 9, 31 and 8, 35 and
7 (critical FDR p = 0.004)

16 connections: 8 and 8, 9 and 1, 11
and 1, 22 and 18, 24 and 22, 31 and
17, 31 and 18, 31 and 22, 31 and 24,
31 and 25, 31 and 31, 35 and 3, 35
and 17, 35 and 24, 35 and 31, 35
and 35 (critical FDR p = 0.004)

ADAS-13 10 connections: 15 and 13, 25 and 15,
28 and 20, 45 and 42, 46 and 40, 51
and 48, 51 and 51, 63 and 37, 64
and 25, 65 and 54 (critical FDR
p = 0.002)

13 connections: 7 and 7, 9 and 7, 9
and 9, 15 and 7, 23 and 8, 25 and
11, 25 and 23, 27 and 27, 28 and 18,
29 and 8, 30 and 7, 30 and 9, 31 and
8 (critical FDR p = 0.004)

7 connections: 8 and 8, 11 and 1, 31
and 18, 31 and 22, 35 and 17, 35
and 24, 35 and 35 (critical FDR
p = 0.002)

CDR-Glob 28 connections: 14 and 12, 18 and 17,
20 and 12, 20 and 18, 20 and 20, 24
and 10, 25 and 15, 26 and 2, 27
and 14, 27 and 20, 27 and 24, 28
and 20, 30 and 11, 35 and 20, 43
and 10, 48 and 10, 48 and 25, 58
and 25, 60 and 13, 61 and 12, 61
and 26, 61 and 27, 61 and 28, 61
and 47, 61 and 61, 62 and 61, 63
and 37, 64 and 25 (critical FDR
p = 0.007)

23 connections: 7 and 7, 8 and 7, 8
and 8, 21 and 7, 23 and 8, 24 and 3,
24 and 10, 25 and 7, 25 and 8, 25
and 11, 25 and 13, 25 and 15, 25
and 17, 25 and 23, 25 and 24, 25
and 25, 28 and 3, 28 and 25, 28 and
28, 29 and 8, 29 and 25, 29 and 28,
30 and 7 (critical FDR p = 0.007)

8 connections: 8 and 8, 29 and 8, 29
and 23, 29 and 29, 31 and 31, 35
and 24, 35 and 31, 35 and 35
(critical FDR p = 0.002)

CDR-SOB 10 connections: 23 and 8, 24 and 10,
28 and 20, 30 and 11, 31 and 3, 37
and 37, 48 and 10, 48 and 25, 63
and 37, 64 and 25 (critical FDR
p = 0.002)

6 connections: 3 and 3, 7 and 7, 8 and
7, 15 and 7, 25 and 25, 28 and 3
(critical FDR p = 0.001)

7 connections: 31 and 17, 31 and 25,
31 and 31, 35 and 17, 35 and 24, 35
and 31, 35 and 35 (critical FDR
p = 0.002)

Here we show various differences in brain networks that are associated with standard measures of clinical decline. Random effects regres-
sion tests were performed for clinical scores on the MMSE, CDR-Glob, CDR-sob, ADAS-11 and ADAS-13 in the whole brain, left, and right
hemispheres separately for the k-cores of all subjects (controls, eMCI, MCI and AD) in connections present in 80% of subjects. We used site
as a random regression variable, and controlled for age and sex. All the nodes that showed significant differences are listed. Significant con-
nections that are common across all clinical scores are shown in bold and the critical FDR p-value for correcting over all valid connections is
shown.

MMSE, Mini Mental State Examination; ADAS-11, 11 item Alzheimer’s Disease Assessment Scale-Cognitive Subscale; ADAS-13, 13-item
Alzheimer’s Disease Assessment Scale-Cognitive Subscale; CDR-Glob, Clinical Dementia Rating Sum of Boxes; CDR-Glob, Clinical Dementia
Rating Global Score; FDR, false discovery rate.
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progress symmetrically, and if the variance does not also in-
crease. For this, we computed the number of asymmetric con-
nections for each subjects by taking the difference of the
weighted connections (fiber densities) in the connectivity ma-
trices between the left and right hemispheres and regressed it
over the clinical scores while covarying for age and sex in all
subjects and using site as a random regression variable. We
found significant results for most scores with FDR critical
p-values of 3.0E-03 for MMSE, 2.0E-04 for CDR-Glob, 4.0E-

03 for ADAS-11, and 1.7E-03 for ADAS-13; no significant re-
sults were found for CDR-SOB. These results indicate that the
asymmetry becomes more pronounced with disease progres-
sion. Similarly, as a post hoc exploratory test, we took the dif-
ference between the left and right hemisphere nodal degree
measures in all subjects and regressed it against the clinical
scores, while covarying for age and sex and using site as a
random regression variable, but we did not detect significant
effects.

FIG. 3. Asymmetries in anatomical connectivity in controls, early and late MCI, and AD. These maps show asymmetries in
the density of connections between all pairs of cortical regions. We show, in color, the �log10 of the p-values from the regres-
sion model comparing the left, CL(x,y), and right, CR(x,y), hemisphere connectivity matrices in 28 controls (top left, FDR critical
p-value = 0.020; higher critical values denote stronger effects) and 57 eMCI subjects (top right, FDR critical p-value = 0.030), 11
lMCI subjects (bottom left, FDR critical p-value = 0.007) and 15 AD subjects (bottom right, FDR critical p-value = 0.021). We
covaried for age and sex and used the scanning site as a random grouping variable in the regression. The same cortical regions
were considered in all four groups. Dark gray regions indicate cortical areas where no significant hemispheric differences were
detected. Based on a random effects regression, the asymmetry in the connection matrix intensified with disease progression.
This could be due to the overall decrease in the number of fiber connections with increasing disease severity.
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Also, we performed random effects regression to test for
differences between the left and right hemispheres in the
weighted k-core and nodal degree. We found left-right hemi-
sphere differences in the k-core matrices for all groups (Table
7). There were no significant differences in the network mea-
sures, nodal degree, efficiency, normalized characteristic path
length, normalized clustering coefficient and normalized
small-world between the left hemispheres in either diagnostic
group. The number of k-core connections showed decreasing
asymmetries between healthy and diseased for controls (151
connections), eMCI (145 connections), and AD (63 connec-
tions), except the lMCI group (nine connections) that might
have been affected by the unevenly small number of subjects.
We should also bear in mind that there are at least another
two factors affecting the number of connections where asym-
metries are picked up. First, the k-core loses nodes drastically
as disease progresses, so the number of nodes present where
asymmetry can be detected is falling rapidly. As such, there is
a downward trend in the number of nodes showing an asym-
metry. Second, one has to bear in mind that the sample size of
the 4 diagnostic groups is uneven—28 for controls, 57 for
eMCI, but only 11 for lMCI and 15 for AD. The power to de-
tect asymmetry is higher when the sample size is higher, as a
smaller effect size can be declared significant in a larger sam-
ple. Together, these processes seem to account for the changes
in the number of connections declared asymmetric as the dis-
ease progresses.

Analyzing the stability of the structural core:
perturbation of k levels

To understand how the different thresholds (different lev-
els of k-core) affect graph theory measures, we computed the
structural backbone using k = 16, 17, 19 and 20, in addition to
k = 18 in all 111 subjects. We compared how the nodal degree,
and the network efficiency—perhaps the most commonly
computed measure in brain connectivity studies—changed
as a function of k. We compared every k-level across all sub-
jects in the whole brain, left, and right hemispheres separately
with every other k-level in that group (i.e., nodal degree for all
subjects at k1 = 16, 17, 18, and 19 was compared to nodal de-
gree in all subjects at k2 = (k1 + 1) = 17, 18, 19 and 20 using a
two-tailed paired t-test and performed FDR correction on
all (5 · 5�5)/2 comparisons. Nodal degree FDR critical p-val-
ues in the left and right hemispheres are 3.0E-03 and 2.7E-03

and efficiency FDR critical p-values in the left and right hemi-
spheres are 4.5E-03 and 5.4E-04 (Fig. 4).

Discussion

Here we report how AD affects structural brain connectiv-
ity in a sample of 111 subjects (comprising patients, controls,
and those at risk of AD). We studied fundamental anatomical
brain subnetworks called the ‘‘k-cores’’. AD affected a variety
of network metrics describing the topological organization of
the brain’s white matter. From the k-cores, we determined the
most highly interconnected networks in the left and right
hemispheres and analyzed whether these regions remained
intact or altered with disease progression. The k-core was
found to be a useful distillation of the overall brain network,
rather than using the full connectivity matrix, as it eliminated
the least reliable connections; these less reliable connections
can arise due to tract tracing errors. To the extent that they
do contain errors, this may worsen the signal-to-noise ratio
and make it more difficult to detect disease effects. As an em-
pirical observation, the k-core did indeed enhance the disease
effects, as the entire k-core was ‘‘lost’’ in the left hemisphere of
AD subjects. These findings are important to locate brain re-
gions that change with disease progression. Ultimately they
may help in assessing effects of treatments, or other interven-
tions, on the brain.

We found significant differences between the left and right
hemisphere connectivity matrices in all subjects (FDR critical
p = 0.037), which led to further analyses of the core networks
that survived with disease progression. In our k-core analyses
comparing AD subjects to healthy controls, all the k-core ele-
ments in the left hemisphere were lost in AD subjects, sug-
gesting that brain network topology changes drastically
with disease progression (Fig. 1). We must emphasize that
this does not mean that those fibers are completely absent
in AD, but the thresholding implicit in creating the k-core
homes in on the highly connected elements. So, according
to this definition, none of these highly connected elements
remained in the left hemisphere in AD. The main connections
and regions that significantly differed in their k-core topology
between controls and AD were found between the middle
temporal and fusiform, inferior temporal and fusiform, pars
triangularis and caudal middle frontal, precentral and caudal
middle frontal, rostral middle frontal and pars opercularis, and
superior parietal and lingual; also, a significant difference in

Table 7. Left-Right Asymmetries in Measures of Anatomical Brain Connectivity

Left-right asymmetries

Network measures Controls (28 subjects) eMCI (57 subjects) lMCI (11 subjects) AD (15 subjects)

k-core elements 151 connections
(p = 0.020)

145 connections
(p = 0.027)

9 connections
(p = 0.0012)

63 connections
(p = 0.014)

NOD NS NS NS NS
EFF NS NS NS NS
k NS NS NS NS
c NS NS NS NS
SW NS NS NS NS

Connections that differed between left and right hemispheres, for the different diagnostic groups. Results are computed from a random ef-
fects regression model (using zeroes for the left hemisphere and ones for the right hemisphere) comparing the weighted k-core measures be-
tween the left and right hemispheres in 28 controls, 57 eMCI, 11 lMCI and 15 AD subjects (not all connections are named in this paper due to
space limits), as well network measures applied on the binarized k-core matrices. The p-values reported here are the FDR critical p-values.
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the proportion of total fibers was detected in the following
regions: fusiform, precuneus, and rostral anterior cingulate.
Some of these nodes are part of the temporal and parietal
lobes, which are known to be among the earliest regions con-
sistently affected by AD pathology (Thompson et al., 2003).
Yao and colleagues (2010) analyzed the ‘‘structural brain
network’’ in patients with AD, and found that the regions
that showed the most significant changes in the interre-
gional correlations between 98 controls and 91 AD include
the temporal lobe, fusiform, superior parietal region and or-
bital frontal gyrus (Xie and He, 2012; Yao et al., 2010). Most
of these regions showed differences here, in groups with
progressively advancing disease. We note, however, that
the Yao and colleagues analyses assessed correlations
among regional volumes using standard anatomical MRI.
This is not the same definition of brain connectivity as that

involved here with DTI, which assesses pathways between
brain regions.

We computed five important network measures—global
nodal degree, normalized characteristic path length, effi-
ciency, normalized clustering coefficient and normalized
small-worldness—that may be useful in the future as possible
new biomarkers of AD. Nodal degree decreased with disease
progression by 23% in the whole brain, 21% in the left hemi-
sphere and 19% in the right hemisphere of AD subjects com-
pared to controls. The normalized characteristic path length
decreased by 22% in the whole brain, 20% in the left hemi-
sphere, and 17% in the right hemisphere. Efficiency decreased
by 24% in the whole brain, 22% in the left hemisphere of AD
subjects compared to controls, and by 19% in their right hemi-
sphere. This indicates that the disease effects can be quanti-
fied using network efficiency measures in the early stages

FIG. 4. Effects of perturbations in the k-core threshold on nodal degree and efficiency. Matrix (5 · 5) representing the p-values
from a two-tailed t-test comparing nodal degree and efficiency measures across five k-levels (k = 16,17,18,19 and 20) in all 111
subjects (nodal degree FDR critical p-values in the left and right hemispheres are 3.0E-03 and 2.7E-03 and efficiency FDR critical
p-values in the left and right hemispheres are 4.5E-03 and 5.4E-04). In other words, we compared k-levels k1 = {16,17,18,19} to
k2 = (k1 + 1) = {17,18,19,20} across all subjects. There were no significant differences across k-levels in the whole brain in all 111
subjects. The greatest differences in the network measures were found between lowest and highest k-values (blue p-values).
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of the disease such as in eMCI and lMCI patients. Here both
efficiency and normalized path length measures were found
to decrease. It is important to note that efficiency is expected
to increase as characteristic path length decreases only when
the path length is unnormalized. Path length should be nor-
malized using appropriately constructed random networks,
as the absolute (unnormalized) value of the path length pro-
vides limited information on the integration in the brain net-
work (Sporns, 2011); the path length varies greatly with the
size and density of individual graphs, whereas efficiency is
a more robust measure—the average of the inverse of the dis-
tance matrix (Sporns, 2011), and was not normalized here.
Also, the decrease in global efficiency is in general agreement
with previous structural connectivity studies (Lo et al., 2010),
bearing in mind the differences between the studies in acqui-
sition and analysis. A lower efficiency may suggest a less op-
timal organization of the brain network structures in AD
subjects (Xie and He, 2012) and perhaps even reduced signal
propagation among brain regions (Lo et al., 2010).

Meanwhile, the normalized small-world effect increased
by 47% in the whole brain, 28% in the left hemisphere and
23% in the right hemisphere of AD subjects, compared to con-
trols. The increase in the normalized small-world effect was
consistent among the eMCI and lMCI subject groups (Fig.
2). Small-worldness depends on several factors that are all
changing in AD, and the results of all the changes may be
nonintuitive or not predictable at the outset. Small-worldness
may be a biologically or functionally advantageous property,
as it is found in many biological networks and may be func-
tionally advantageous relative to random networks. As such,
one might not predict that the property would increase in
AD, as there is clearly no functional advantage to having
AD. Compared to random networks, which tend to have
short average path lengths and relatively low clustering, the
small world effect tends to be higher when a network has a
high level of clustering, or when the average path lengths be-
come shorter. This is because the small-worldness is based on
the ratio of the clustering coefficient to the path length, after
normalizing each of those to values in a random network.
The loss of fibers in AD can remove some connections from
a network that is thresholded based on the nodal degree.
This led to a decrease in average normalized path length in
the whole brain, left, and right hemispheres, while the nor-
malized clustering coefficient increased in the whole brain
by 13% (and did not change significantly in the left and
right hemispheres), so the normalized small-world effect
also increased in the whole brain, left, and right hemispheres.
The increase in clustering coefficient does not always indicate
a densely interconnected and coherent brain system; in fact, it
can be disproportionately influenced by nodes with low
nodal degree, which is a phenomenon observed in AD–the
nodal degree decreases relative to controls (Fig. 2).

Furthermore, we found network asymmetries—between
left and right hemispheres—in all diagnostic groups. This
is not entirely surprising: as shown Figure 3, there is a
clear asymmetry between the left and right hemisphere net-
works, regardless of the diagnostic group. This may even in-
tensify as the disease progresses as the clinical scores
between the left and right hemisphere connectivity matrices
were significantly different. Regions with connectional
asymmetry were scattered all over the brain. A related pat-
tern of diffuse asymmetries was also observed in a recent de-

velopmental study of adolescents and young adults (Daianu
et al., 2012a). These increasing asymmetries may be due to
age or disease, or both, and it is not clear whether they are
harmful or benign.

We further analyzed the differences in the k-core, nodal de-
gree, normalized characteristic path length, efficiency, nor-
malized clustering coefficient, and normalized small-world
effect of the k-core in the left and right hemisphere in all
groups (Table 7). We found differences in all diagnostic
groups for the k-core measure; however, no differences
were found for the rest of the network topology measures be-
tween the left and right hemispheres. We previously
reviewed evidence for asymmetries in disease progression
in AD (Thompson et al., 2003); evidence is mixed, and not
all studies support an asymmetry, but the differences in con-
nectivity measures and their variance by hemisphere make it
plausible that some connections may show stronger differ-
ences in one hemisphere than the other. To corroborate this,
longitudinal data will be helpful, when available, from a pe-
riod long enough to show substantial decline.

Another important aspect to consider is that highly con-
nected k-cores contain hubs that are thought to facilitate inte-
grative processes due to their densely connected nodes. Hubs
have high nodal degrees and tend to form a rich club—a set of
high-degree nodes that are more densely interconnected
among themselves than nodes of a lower degree (see, e.g.,
van den Heuvel and Sporns, 2011, which describes the rich-
club organization of the human connectome). The ‘‘rich club
of the hubs’’ is a related but separate concept from that of
the k-core—used in the current study—as the rich club coeffi-
cient evaluates a range of k-core matrices (i.e., with k = 1, 2,
3., etc.); here, we analyzed the k-core at k = 18 because this
was the minimal value for which the majority ( > 50%) of
nodes within each hemisphere would still remain connected.
At k = 18, we have a highly and mutually interconnected net-
work of the brain. However, a smaller k value ( < 18) will
apply a lower threshold to the network, including nodes
with lower degrees, and leading to less interconnected net-
works. Recently (in Daianu et al., 2013), we found that the
rich club coefficient increased in AD with increasing k and de-
creasing nodal degree in the residual k-core (i.e., when a
smaller percentage of nodes are retained), relative to controls.
The rich club is a slightly more elaborate concept than the k-
core. The k-core is simply a network—part of the original net-
work—found by thresholding the network to retain only
those nodes with high nodal degree (i.e., with degree k or
higher). The rich club coefficent, F(k), is a ratio of the number
of connections among nodes of degree k or higher versus the
total possible number of connections if those nodes were fully
connected. The rich club is a more complex notion than the k-
core: it is a function defined on all the k-cores, which can be
tested statistically for signs of rich club organization.

To test the reliability of our measures, we analyzed the sta-
bility of the structural core at k = 18 by comparing the k-core in
all subjects over a variety of k-levels. Based on a two-tailed
paired t-test, the perturbation in the k-levels was significant
between the minimum and maximum k-level comparisons
for the networks measures (nodal degree and efficiency) in
the left and right hemispheres separately, while these pertur-
bation did not affect the network measures significantly in the
whole brain in all 111 subjects (Fig. 4). All significant changes
were found between k-levels 16 and 19 and 16 and 20 for
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nodal degree and efficiency. There were no significant
changes with small perturbations of k-levels (i.e., between k
and k + 1); as described above, all changes were detected be-
tween levels k and k + 3 as well as k + 4 (i.e., k = 16 and k = 19).

This study has several limitations. Our study was con-
ducted at 3 T, so connectivity studies at higher fields, or
with different protocols, may reveal group differences in ad-
ditional regions (in Zhan et al., 2013a, we compare connectiv-
ity computed at 7 and 3 T in the same subjects). Even so, the
use of higher fields may not necessarily become standard for
academic or clinical studies in the near future. Another limi-
tation of our work, is the small and uneven number of sub-
jects in each diagnostic group (28 controls, 57 eMCI, 11
lMCI and 15 AD subjects). ADNI2 subjects are continuing
to be scanned, so our future work will assess larger cohorts
to verify how connectivity measures change over time as
AD progresses. In future work, we will also aim to study
the specific effects of amyloid pathology on brain network
dysfunction using amyloid imaging. These changes may
have a tighter relationship to amyloid than to clinical diagno-
sis, although that remains to be evaluated.

Another factor to consider is the tractography method
used. In this paper, we generated around 10,000 fibers per
subject, using the Hough transform method (Aganj et al.,
2011), but some other tractography algorithms such as
FACT (Mori et al., 1999) and TEND (Lazar et al., 2003) gener-
ate up to hundreds of thousands. As such, it is of interest
whether this density of sampling is sufficient to compute net-
work metrics that are stable, and have converged, and have
sufficient power to pick up group differences. Our group pre-
viously studied the effect fiber density has on network mea-
sures and on the power to distinguish disease effects
(Prasad et al., 2013). High-density fiber matrices were most
helpful for picking up the more subtle clinical differences.
However, based on the current study, the networks in AD
are significantly different from controls so that the inference
about differences between controls and diseased might not
be influenced by fiber counts. One final limitation is our use
of thresholding to define the k-core, even though the thresh-
old was chosen in a principled way. Other mathematical
work (Lee et al., 2012) has defined novel distance metrics
on filtrations of networks, in an attempt to retain the full infor-
mation on the set of all networks defined by thresholding the
nodal degree at different thresholds. However, we tested the
reliability of our structural core at k = 18 by comparing it to k-
cores computed at k = 16, 17, 19 and 20 and found that imme-
diate k-levels do not perturb the structural network signifi-
cantly. Clearly, these and other more advanced metrics on
graphs and graph filtrations may also show promise in defin-
ing how networks decay and change as disease progresses.

Conclusion

In this study, we tested for alterations in the core graph of
connections in the brain caused by disconnections in AD and
how the clinical progression of AD affects network measures
and possibly, network asymmetries in the brain. We found
that AD wipes out the core connections in the left hemisphere,
relative to controls, and affects the topology of the brain net-
work—therefore, altering the network measures. Lastly, we
found that network asymmetries were present in all diagnos-
tic groups and may intensify with disease progression.
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